A Cut-Free and Invariant-Free Sequent Calculus for PLTL
نویسندگان
چکیده
Sequent calculi usually provide a general deductive setting that uniformly embeds other proof-theoretical approaches, such as tableaux methods, resolution techniques, goal-directed proofs, etc. Unfortunately, in temporal logic, existing sequent calculi make use of a kind of inference rules that prevent the effective mechanization of temporal deduction in the general setting. In particular, temporal sequent calculi either need some form of cut, or they make use of invariants, or they include infinitary rules. This is the case even for the simplest kind of temporal logic, propositional linear temporal logic (PLTL). In this paper, we provide a complete finitary sequent calculus for PLTL, called FC, that not only is cut-free but also invariant-free. In particular, we introduce new rules which provide a new style of temporal deduction. We give a detailed proof of completeness.
منابع مشابه
Dual Systems of Tableaux and Sequents for PLTL
On one hand, traditional tableau systems for temporal logic (TL) generate an auxiliary graph that must be checked and (possibly) pruned in a second phase of the refutation procedure. On the other hand, traditional sequent calculi for TL make use of a kind of inference rules (mainly, invariant-based rules or infinitary rules) that complicates their automatization. A remarkable consequence of usi...
متن کاملInvariant-Free Deduction Systems for Temporal Logic
In this thesis we propose a new approach to deductionmethods for temporal logic. Our proposal is based on an inductive definition of eventualities that is different from the usual one. On the basis of this non-customary inductive definition for eventualities, we first provide dual systems of tableaux and sequents for Propositional Linear-time Temporal Logic (PLTL). Then, we adapt the deductive ...
متن کاملCut-free sequent systems for temporal logic
Currently known sequent systems for temporal logics such as linear time temporal logic and computation tree logic either rely on a cut rule, an invariant rule, or an infinitary rule. The first and second violate the subformula property and the third has infinitely many premises. We present finitary cut-free invariant-free weakeningfree and contraction-free sequent systems for both logics mentio...
متن کاملA Contraction-free and Cut-free Sequent Calculus for Propositional Dynamic Logic
In this paper we present a sequent calculus for propositional dynamic logic built using an enriched version of the tree-hypersequent method and including an infinitary rule for the iteration operator. We prove that this sequent calculus is theoremwise equivalent to the corresponding Hilbert-style system, and that it is contraction-free and cut-free. All results are proved in a purely syntactic ...
متن کامل0 N ov 2 01 7 A Cut - free sequent calculus for modal logic S 5 ∗ †
Providing a cut-free sequent calculus for S5 has a long history. The efforts in this direction are numerous, and each of them presents some difficulties. In this paper, we present a sequent calculus system for modal logic S5. It has in a sense subformula property. We show that the cut rule is admissible in this system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007